mastodon.green is one of the many independent Mastodon servers you can use to participate in the fediverse.
Plant trees while you use Mastodon. A server originally for people in the EU, but now open for anyone in the world

Administered by:

Server stats:

1.2K
active users

#ggplot2

20 posts20 participants2 posts today

#30DayChartChallenge Día 16: Negative Relationship FOUND! 📉🐍🐦🐢🐟

¡Lo conseguimos! Tras ajustar por masa corporal, la relación entre Tasa Metabólica Específica (W/kg) y Longevidad Máxima (años) en ~530 especies animales (AnAge DB, outliers quitados) SÍ es negativa (Pearson ρ ≈ -0.42, p < 2.2e-16). #RelationshipsWeek #Animals

El gráfico log-log muestra la tendencia: mayor intensidad metabólica por kilo se asocia con vidas más cortas. ¡Apoya la idea del "ritmo de vida"! 🔥➡️⏳ Colores por Clase Taxonómica.

Un recordatorio de la importancia de normalizar variables y limpiar datos para ver la señal correcta. ¡Ciencia en acción!

🛠 #rstats #ggplot2 #ggpubr | Data: AnAge | Theme: #theme_week3_animals
📂 Código/Viz: t.ly/ouLN0

The recording of my PyData Global talk about data visualisation with Plotnine in #Python is now available! 🐍

Give it a watch if you're interested in:

📊 customising plotnine plots
📈 combining with matplotlib functions
✍️ adding custom annotations with HighlightText

(or if you're an #RStats user wondering about Plotnine vs #ggplot2)

Link: youtube.com/watch?v=NBGJuaBF2r

#30DayChartChallenge Día 15: Complicated Relationships! 🐧↔️🐧

Hoy, una matriz de scatter plots con ggpairs para explorar las relaciones entre medidas corporales (Long. Pico, Long. Aleta, Masa Corporal) en los pingüinos de Palmer. ¡Perfecto para el prompt "Complicated"! #RelationshipsWeek #Animals

La matriz lo enseña todo:
* Diagonal: Distribución de cada medida (densidad).
* Abajo: Scatter plots de cada par de medidas (coloreado por Especie).
* Arriba: ¡La correlación $ entre ellas!

Se ven las fuertes relaciones positivas (más grande = aleta más larga) y cómo las especies (Adelie, Chinstrap, Gentoo) forman clusters distintos en este espacio de rasgos. ¡Una forma densa de ver muchas relaciones a la vez!

🛠 #rstats #ggplot2 #GGally | Data: #palmerpenguins | Theme: #theme_week3_animals
📂 Código/Viz: t.ly/GATJi

Mapping -diff(y) to linewidth = "light on the upstroke, heavy on the downstroke" = calligraphy

```
library(tidyverse)
library(pracma)
tibble(s = seq(pi, -pi, len = 5000),
x = fresnelS(s), y = fresnelC(s),
wd = c(0, -diff(y))) |>
ggplot() +
geom_path(aes(x=x,y=y, lwd=wd), show.legend=FALSE) +
scale_linewidth_continuous(range=c(.1,2.5)) +
theme_void()
```

#30DayChartChallenge Día 13: Clusters Animales! 🐾 Explorando la relación Masa Corporal vs Longevidad Máxima. #RelationshipsWeek

Usando un dataset de Kaggle (+170 especies, ¡gracias S. Banerjee!) y tras una divertida limpieza de datos con rangos/unidades mixtas 😅, este scatter plot log-log revela patrones.

Coloreamos por Dieta: 🥩Carnívoro(verde) 🌿Herbívoro(ocre) ❓Omnívoro(azul).
Se ve la tendencia general (más grande = más longevo), pero los clústeres por dieta sugieren distintas **estrategias de historia de vida**. ¿Cómo gestionan su energía y longevidad según lo que comen? 🤔

¡Una visualización para explorar la alometría y la diversidad ecológica!

🛠️ #rstats #ggplot2 y mi nuevo tema #theme_week3_animals.
📂 Código/Viz: t.ly/ehPiu

#30DayChartChallenge Día 12: Gov Data Day! 🏛️ Explorando la distribución del spread 10Y-2Y del Tesoro USA (datos de FRED desde 1976).

Este histograma/densidad va más allá del valor diario: muestra la *probabilidad* histórica de cada nivel del spread. ¡Clave para entender expectativas económicas!

Puntos clave:
* Modo principal > 0 (curva normal es lo más común).
* ¡La inversión (<0, línea discontinua) tiene una probabilidad no trivial! ⚠️ Es la famosa señal pre-recesión. La distribución nos dice cuán "normal" es esa señal en perspectiva histórica.
* La forma general revela info sobre la dinámica de tipos.

Una visualización sobre la estructura probabilística de un indicador líder fundamental.

🛠️ #rstats #ggplot2 #quantmod #grid
📂 Código/Repo: t.ly/0RDmK