mastodon.green is one of the many independent Mastodon servers you can use to participate in the fediverse.
Plant trees while you use Mastodon. A server originally for people in the EU, but now open for anyone in the world

Administered by:

Server stats:

1.2K
active users

#llama4

1 post1 participant0 posts today
Continued thread

🧩 #Llama4Maverick nutzt 128 Experten für deutlich mehr Rechenleistung und schlägt sogar #GPT4o und #Gemini20 in Benchmarks – bei nur der Hälfte der aktiven Parameter von #DeepSeekv3.

🎓 Beide #KIModelle wurden mithilfe des riesigen Lehrmodells #Llama4 Behemoth trainiert, das mit 288 Milliarden aktiven Parametern zu den leistungsstärksten weltweit zählt.

👉 eicker.TV #Technik #Medien #Politik #Wirtschaft (2/2)

eicker.TV - Technews als Kurzvideo
eicker.net · eicker.TV ► Technews Kurzvideos als TikToks, Shorts, Reels
More from Gerrit Eicker 🇪🇺🇺🇦

Meta faces flak for using an experimental Llama 4 Maverick AI to inflate benchmark scores. This prompted an apology & policy shift, now favoring the original version which lags behind OpenAI's GPT-4o, Anthropic's Claude 3.5, & Google's Gemini 1.5. Meta explained the experimental version was optimized for dialogue and excelled in LM Arena, but its benchmark reliability is debated. Meta clarifies they test various AI models, releasing the open-source version of Llama4 #AI #Meta #Llama4 #Benchmarks

#Meta Says #Llama4 Targets Left-Leaning Bias

#Facebook Pushes Its Llama 4 #AI Model to the Right, Wants to Present “Both Sides”
Meta’s Llama 4 model is worried about left leaning bias wants to be more like #ElonMusk’s #Grok.
"All leading #LLM have had issues with bias -- specifically, they historically have leaned left," Meta stated, framing AI bias primarily as a political problem. The company claims Llama 4 is "dramatically more balanced" in handling sensitive topic
404media.co/facebook-pushes-it

404 Media · Facebook Pushes Its Llama 4 AI Model to the Right, Wants to Present “Both Sides”Meta’s Llama 4 model is worried about left leaning bias in the data, and wants to be more like Elon Musk’s Grok.
Replied in thread

Meta's Llama 4 (which is being forced on all #WhatsApp users) doesn't do any of chain-of-thought reasoning and incorrectly calculates the number of squares of one colour. Claims that a 7x7 checker board with one corner missing has 23 of one colour so makes tiling impossible but then continues on for several paragraphs about possible tiling approaches.

Llama 4問世反應平平,開發人員認效能表現言過其實 | iThome

Link
📌 Summary:
Meta 公佈旗艦模型 Llama 4 家族,包含開源的 Maverick (4000 億參數) 和 Scout (1090 億參數) 兩款模型,均使用 170 億活躍參數的混合專家 (MoE) 架構。Meta 宣稱其效能優於 GPT-4o 和 Gemini 2.0,然而開發人員發現 Meta 在標竿測試中使用了經過優化的實驗版本而非開源版本,引發爭議。此外,實際測試也顯示 Llama 4 的表現未如宣傳所言,尤其是在長文本處理方面,遠未發揮 10M 字詞上下文的潛力。

🎯 Key Points:
1. Meta 推出 Llama 4 家族,採用混合專家 (MoE) 架構,開源兩款模型:4000 億參數的 Maverick 和 1090 億參數的 Scout。
2. Meta 宣稱在 LMArena 測試中 Llama 4 Maverick 排名第二,超越 GPT-4.5 preview 和多款 Gemini 模型。
3. 開發人員發現 Meta 在測試中使用「對話性優化過」的實驗版本,而非向公眾開放的版本,引發操弄爭議。
4. Scout 模型雖號稱擁有 10M 字詞的上下文長度,但在第三方平臺如 Groq 和 Fireworks 上受限於 128K 字詞。
5. 研究人員實測 Scout 處理長文本的能力不佳,產生重複跳針的內容,表現遠不如宣傳。
6. 有觀點認為 170 億活躍參數已顯不足,或 Meta 團隊對 MoE 架構尚未充分掌握就急於推出成果。

🔖 Keywords:
#Llama4 #混合專家模型 #Meta #效能爭議 #開源人工智慧
iThomeLlama 4問世反應平平,開發人員認效能表現言過其實有開發人員試用Llama 4後,認為Meta公布的Llama 4標竿測試的良好成績,是來自特別處理的Llama 4版本,而非實際釋出的開源版本

🚀 #Llama4 di Meta migliora l'AI generativa: Maverick e Scout battono le aspettative, con capacità visive native e approccio semi-open. La comparazione con ChatGPT 4.5 e Claude 3.7 mostra che l'efficienza batte le dimensioni. Meta sfida i giganti con intelligenza artificiale per tutti 🤖 #AI #Meta

"In keeping with our commitment to open source, we’re making Llama 4 Maverick and Llama 4 Scout available to download on llama.com and Hugging Face […]"

This is your regular reminder that *ALL* of the Llama Community License Agreements have terms incompatible with Open Source norms.

#FreeSoftware #OpenSource #FOSS #OSS #AI #Llama4

ai.meta.com/blog/llama-4-multi

Meta AIThe Llama 4 herd: The beginning of a new era of natively multimodal AI innovationWe’re introducing Llama 4 Scout and Llama 4 Maverick, the first open-weight natively multimodal models with unprecedented context support and our first built using a mixture-of-experts (MoE) architecture.